Smart Camera Design

Tvéan Olaf Hernandez |, Miguel Enrique Bravo Zanoguera', Guillermo Galaviz
Yaiiez'

Wniversidad Auténoma de Baja California, Facultad de Ingenieria
Blvd. Benito Juarez S/N, Mexicali, Baja California, México
ivan.olaf@yahoo.com, bravometric@yahoo.com, gealaviz@uabe.mx

(Paper received on February 29, 2008, accepted on April 15, 2008}

Abstract. The design and implementation of a smart device for image capture,
processing and display is presented. The architecture is based on a CMOS image
sensor and a pipelined processing structure implemented in a single FPGA
device. The embedded system includes: I2C serial communication with the
sensor, interpolation processing for demosaicing the Bayer pattern of the sensor,
structure for color correction and image display in VGA format. The design
holds the on-chip sophisticated functions of the image sensor. It can be used for
low-cost vision systems that require real-time processing and portability .

Keywords: FPGA, pipelined processing, VHDL, CMOS image sensor, Smart Camera.

1 Introduction

The design of a smart camera architecture based on a FPGA and a CMOS image sensor
is presented. A Cyclone II FPGA from Altera is used as data pixel processor. A
Micron’s MT9T001 CMOS image sensor is used as the image capture element. Low
level image processing operations were implemented using a pipelined architecture,
obtaining a high data rate. After an initial latency, every pixel is computed at input data
frequency, which gives real-time results.

The design was specified using VHDL. Since it is a standard language the design
can be implemented in any FPGA, regardless of the manufacturer or the EDA tool
used. This work was done from the scratch: the image capture stage is not based on a
commercial camera with an analog or digital video output, instead of that a pipelined
processing architecture was implemented to obtain color image from the sensor’s raw
digital output (Bayer patterned).

The whole system for image capture, processing and display was developed in a
single FPGA. Different digital subsystems were implemented to do the following tasks:
e A component to write commands to the image sensor and control its functions. The

I2C communication protocol was implemented
e A component to apply bilinear interpolation to extract the three color components

for each pixel of the image sensor (Bayer patterned)

¢ A component that allows the display in the three color channels in VGA format.

, A component to apply a color correction matrix for suitable color perception image

©E. V. Cuevas, M. A Perez, D. Zaldivar, H. Sossa, R. Rojas (Eds.)
Special Issue in Electronics and Biomedical Informatics,

Computer Science and Informatics

Research in Computing Science 35, 2008, pp. 97-106

98 Ivdn Olaf Herndndez et al.

A block diagram of the system is presented in Figure 1. The image processing
block implements the pipelined structure to perform bilinear interpolation and color
correction in real time using minimal memory resources. It is also possible to
implement any other image operation that has the same stricture. Furthermore, the
architecture presented can be reconfigured since is implemented in a FPGA

FPGA Device

U |

Fig. 1. Simplified scheme of the developed architecture.

2 MT9T001 Image Sensor

The MT9T001 is a CMOS active-pixel digital image sensor with an array of 2,048
horizontal by 1,536 vertical (QXGA format). It has an on chip analog-to-digital
converter that provides 10 bits per pixel. It has a maximum pixel data rate of 48
megapixels per second. The sensor can be operated in its default mode or programmed
by the user for frame size, exposure, gain setting, and other parameters. It is
programmable through a simple two wire serial interface following the I2C protocol
[1IThe MT9T001 uses a color filter array with the Bayer pattern, in which every pixel
has a filter of one of the primary colors. The MT9T001 image data is read out in a
progressive scan. Valid image data is surrounded by horizontal blanking and vertical
blanking (not valid data). The amount of horizontal blanking and vertical blanking is
programmable. It is possible to modify the values of the control internal registers of the
MT9T001 in order to change the window size and its location within the pixel array.

3 Image System Design in a FPGA
3.1 Control Interface for the MT9T001 Registers

The MT9T001 sensor can be programmed through a two wire serial interface that
controls the reads and writes of the internal registers of the sensor using the 12C

Smart Camera Design 99

mastet-slave protocol. In this work the sensor works as the slave. A design was done in
a FPGA to implement the write sequence. Component 12C_ESCRITURA was realized
to establish the write sequence to the sensor registers, it-is subdivided in the
components listed in table 1. Figure 2 shows a block diagram of component
[2C_ESCRITURA.

Table 1. Components list of 12C_ESCRITURA design

Components __ Brief Description

12C_WRA State machine to realize the 16-bit write sequence

12C_CNTR Provides registers number and data to be written in them
Obitains clock frequency of 100 kHz for I2C protocol

T

Fig. 2. Block diagram of the component 12C_ESCRITURA and its subcomponents. '

3.2 Design to Obtain the Three Color Components of Every Pixel

The MT9T001 sensor uses a color filter array with the Bayer pattem, thus it is
_necessary to process this raw image in order to obtain the two missing color
components for every pixel, using the color data of the adjacent pixels. The bilinear
interpolation algorithm was selected for this task, since it is an algorithin that allows
implementation using a regular and repetitive structure. The bilinear interpolation
algorithm is widely used due to its low computation cost and because it offers an

acceptable quality [2].
If an image sensor has the Bayer pattern as shown in figure 3b), the bilinear

interpolation obtains the values of the missing colors by taking the average of the
neighbor pixels; for instance, if it is located on a blue pixel it takes the average of the
four red pixels and the four green pixels to obtain the red and green values respectively,
in figure 3a) this idea is presented. From figure 3b), some examples for calculating
pixel values are shown below:

If the pixel to work with is the blue pixel By, the red and green values are obtained

from:
Ry = (Ry + R, +Ryy + R) /4 A0 Gy =(Gy + G, + Gy +Gis)/ 4

100 Ivin Olaf Herndndez et al

If the pixel to work with is the red pixel R, the blue and green values are obtained

from:
By, =(Bs+ By + By +Bi;)/4 and G, =(G, + G, + G, + B,)/ 4
If the pixel to work with is the green pixel G, the red and blue values are obtained

from:
R, =(R,+R)/2and B —(B +B)/2

2} b)

Having blue, green and red are ue;_de(l
G= Average of the 4 green neighbors
" R= Average of the 4 red neighbors

Having greett. blue and red are needed
B= Average of the Z biue neighbers
R= Average of the 2 red neighbors

Having red . green and blue are needed
G= Average of the 4 green neighhors
B= Average of the 4 red neighbers

Fig. 3. a) The bilinear interpolation algorithm, b) shows the Bayer pattern

To implement these equations on hardware it is necessary to use adders and dividers.
Divisions in powers of two can be implemented with right shift operations. VHDL
allows these arithmetic and logical operations. The bilinear interpolation is a
neighborhood operation similar to convolution filters with kernels of size 3x3.

The architecture of a general 2-D convolver presented in [3] was used. This
architecture is shown in figure 4 and it can be observed that it only requires two line
buffers to form the pipeline and three shift registers of three elements (pixels) to
perform the 3x3 convolution window, which is used to have the necessary pixels for
the operations with the eight neighbors. The use of two line buffers shouldn’t be seen as
a limitation, but as a design condition to use the minimal memory resources,

Original
brage
Qo

Processed Image

Skife register with the n pixels
of a line of the mage frame

coeflicient

! E pixel vegister
Ny

W

Midaplication Accramilation
Operation

Fig. 4. Architecture to implement a general 2-D Convolver.

Subcomponents were created as a patt of the major component PIPEBILINEAL, to
implement the bilinear interpolation in a pipelined architecture. The component PIPE

Smart Camera Design 101

creates the shift registers to form the pipeline. These registers must have the same
number of elements as pixels in a line of the image frame. Since every pixel has 10 bits
a considerable amount of memory is required. The VHDL coding style used forced the
EDA software QUARTUS II to implement these shift registers in the dedicated
memory blocks of the FPGA instead of misusing the available generic logic elements
of the device (chapter 7 of [4] shows the VHDL coding styles). Component
CONTPOS2 implements the counters that bring the pixel position relative to the center
point of the convolution window. This position refers to the coordinates (row, column)
of the corresponding pixel in the image frame and it is used to know if the pixel is
located on a red, green or blue filter and to know which missing colors must be
estimated. Component PIPECONV2 implements the registers to form the filter window
and the hardware required to perform the arithmetic operations to obtain the bilinear
interpolation; depending on the pixel position, it takes the required pixels from the
window registers and performs the necessary operations. Component FRAMEBEGIN
accepts the data and synchronization signals of the MT9T001 sensor. In figure 5 a
block diagram of PIPEBILINEAL is shown.

Figure 6 shows the architecture to apply the pipelined bilinear interpolation, with an
example of a 4x4 image frame size, where the line buffers for the pipeline have four
pixels (as the four pixels in a line of the image frame). The necessary data to carry out
the processing is stored in the three lower registers. These registers form the
neighborhood window that is represented by a dashed line over the data frame in figure
8. The data stream is carried out pixel by pixel, Jine by line. In this architecture the
pipeline orders the pixels in such a way that the operations can be performed in
parallel. After a Jatency time of two lines and two pixels, the processed data is obtained
at the input pixel data rate. Component PIPECONYV takes into account the conditions
where the window is on the edges of the image frame, for those cases it is considered
that the missing pixels have a null value.

Table 2. Components list of PIPEBILINEAL design

Components Brief Description

PIPE Creates the shift registers to form the pipeline.
CONTPOS2 Brings the pixel position in the image frame.

PIPECONV2 interpolation operations

FRAMEBEGIN Accepts the sensor’s data and synchronization signals

Sensor's . gy - >
Semsar | PIPEBILINEAL!
l,v. r—eu TROOE..D) i
' R o AR I
' - : \—- MPR.D] OUTPR.E} "

I . .
i seonrevEs” R l—x 33 Colar
SRENR.D) P=K (o, <
i A=t e Ao % P ¢ IC mponent:
] x—{ma cowrvon.g) S Data
-’ CONTCOUS.A
i coNTR|. 2
[: CONTREN{LD)
ing {
1 [T— N

L oo e o o e o i o o

= 1
Fig. 5. Block diagram of the component PIPEBILINEAL and the components that
conforms it

102 Ivdn Olaf Herndndez er al.

1T
Wt b s
pe2t 2Tzt
MUY

FERE
WA @

ct
0}

<1
(1}

(2]

i i})
[CoaCCONI NS Beca) |

R=25 G=18 B=ap |

—

Fig.6. Pipelined architecture to implement bilinear interpolation, showin gan
example with a 4x4 image frame size.

3.3 Real Time Display of the Interpelated Data in Three Color Channels.

To carry out the real time display of the interpolated pixels (the obtained pixels from
applying the bilinear interpolation process), alternatives where looked to utilizes the
minimum of memory and it was concluded that with three memory arrays, every one of
them with two line buffers, it would be sufficient to capture and display in real time.
For major comprehension, in figure 7 are represented two arrays (RGB1, RGB2) of
three buffers each one. The capture and display process is explained next:

After the latency of the bilinear interpolation is taken into account (figure 7a), the
first interpolated data line is stored in the RGB1 array (figure 7b). Then, the second
interpolated data line is stored in the RGB2 array while the content of RGB1 is read out
for display (figure 7c); these steps are repeated nonstop. In figure 7, the signal “capture
of line” represents the line valid signal from the sensor and the signal “display of line”
represents the valid display line period of the VGA format. The data begins to be
displayed after the interpolation latency and after the first interpolated data line is
stored (figure 7c). For this process to run, the capture cycle must have the same
duration as the display cycle and be synchronized. The 48Mhz clock signal from the
Sensor acts as the master clock and a derived 24Mhz clock signal is used for the display
cycle in VGA format; therefore, synchronizing the capture and display cycles. The 24
MHz clock signal generates a frame rate of 53 frames/s for the display in VGA format,
The I2C_ESCRITURA component was used to configure a 640x480 image frame size
(VGA) and to modify the horizontal and vertical blanking duration accordingly, so the
capture and display cycles were synchronized.

The DESP_REAL4 module was created for the real time display and it is subdivided
in the components shown in figure 8 and in table 3. The BUFDESP4 component
accepts the interpolated data coming from the PIPEBILINEAL component generates
the counters and provides the address and enable signals to write and read to each of
the color channels memory. The components BUFRED, BUFGREEN and BUFBLUER
are memory blocks containing each one a two line buffers, each component stores on of
the three color channels. These memory blocks have separated port, enable and clock

Smart Camera Design 103

signals for write and read, and 2 VHDL coding style was used in order to implement
dual port and dual clock RAM memory utilizing the dedicated memory blocks of the
FPGA, as it is recommended in chapter 7 of [4]. The component VGAS generates the
synchronization signals for the VGA format and accepts the three data ports coming
from the components BUFRED, BUFGREEN and BUFBLUE, providing the VGA
display in the three color channels. The component CLKDIVIDE divides the frequency
of the master clock from 48 MHz to a 24 MHz clock signal.

ey j;_,j'U LM LI

Buffors | [Bufert |
1RGB U] LRGBS

Dhgiey
etine

Witesto B2 |

Fig.7. Management of memory to carry out the capture and display of the interpolated data in the
three color channels

3.4 Color Correction

A color correction is applied since the spectral response of the CMOS image sensor
is different that the response of the human eye, and also different from the response of
the display device [5]. The color correction multiplies a 3x3 matrix with the vector
formed of the red (R), green (G) and blue (B) values of every interpolated pixel, as it is

Ri_\n [R R'= I‘IR+}’2G+Y3B h R} RGB
shown next. |G\ \g, g &||G G=gR+&,G+gB |G|
gl b b b |B B'=bR+b,G+bB B

, or

values of the interpolated i)ikei,-' 2 = RGB values of the cormrected pixel and
: .

N I 7. . . .
12 531 is the correction matrix.

3

o
N
00

3

104 Ivan Olaf Herndndez et al.

Typically the coefficients have values n>Ln<ln<l, g <lg >Lg <1,
b, <1,b, <1,b, >1. Where the sum of the values of each coefficient set must be equal to

one to maintain color balance [6]. For color correction implementation, the product of
the coefficient fractional part by the interpolated data (R, G or B), and the product of
the coefficient integer part by the interpolated data, are obtained separately, and then
these products are added resulting an integer number (disregarding the fractional part).
This is done for every interpolated data, these results are added and limited to a
possible maximum or to zero if it is a negative result. Figure 9 shows the structure to
obtain the equation for the corrected red (R’), for the equations of the corrected green
and blue (G’, B’), the same structure is used with the corresponded coefficients. The
component MULTADDS was designed to have a structure required to apply the
correction matrix, and the values of the coefficients will depend of user application.

o R oEm s D S SR we oR G me @S tm mm ow me e @
wrisEe

o

prreven

DESP_REAL4

BUFDESFE © 7

Fig.8. Block diagram of DESP_REAL4 showing its components

Table 3. List of components of the design DESP_REAL4

Components Brief Description

BUFDESP4 Accepts interpolated data and generates write/read signals for the
RAM arrays.

BUFRED, Each one creates a memory block containing two line buffers, the

BUFGREEN blocks are dual port and dual clock RAM, each component stores one

& BUFBLUE of the three color channels.

VGAS Generates the synchronization signals for VGA format in three color
channels

CLKDIVIDE _ Obtains the 24 MHz clock signal for the VGA display

Smart Camera Design 105

r;;fmc,‘;——————jL
A

[if/ . 70 ,}\ R = rR+r:Gerd

¢ e
o~ S g’

L—‘; x
rieat _..j/

rifrac —-m-j
%) B r.frac.; =Fractionat part of the coefficient r.
[e relom. = Integer part of the coefficient r.

S R =Red intepolated data
G =Green intepolated data

r;;m.g__J 3 =Blue interpolated data

Fig.9. Structure to obtain the equation for the corrected red R’

4. Results and Discussion

The top level design called DESP_BAYER3 joins the components to carry out the
sensor configuration (12C_ESCRITURA), the bilinear interpolation (PIPEBILINEAL),
the color correction (MULTADDS) and the real time display in the three color channels
(DESP_REAILA.vhd). Figure 10 shows a block diagram of DESP_BAYER3.

In this system the initial latency time ¢, , is the sum of the latencies provoked by the
interpolation processing 7, = (n+2)1/ f (time of capturing two lines and two pixels),
the real time display process z, = (n)l/ f (time of capturing one line) and the color
correction structure ¢, =1/ 7 . After a latency time ¢, described by equation 1, the

system begins to display image from the sensor in VGA format.
t,=t, 1+, =2Qn+3/ f ey

Where 7 is the number of pixels in a line of the image frame and f is the

frequency of the clock.

The resources utilized from the FPGA Cyclone II to implement the system
DESP_BAYER3 are shown in table 4, and represent an optimized design, leaving
plenty of free resources, especially for memory.

Table 4. Utilized resources of the FPGA Cyclone If

FPGA used resources Used elements /total elements Percentage
Total logic elements - 930/33,216 28%
Total memory bits 51,160/483,840 11%

9-bit embedded multipliers 10/70 14%

106 Ivan Olaf Herndnderz et al.

It is Important to mention, that within the VHDL codes, exist a list of parameters
used by the components of the system in such a way that values of number of pixels in
a line and number of bits in a pixel can be configured, also the pipelined interpolation
processing architecture can be configured in the, number of-line buffers, the number of
register for the filter window.

FPGACYCLONE il BPGISFRT2CE

" o T e e
DESP_BAYER3

comsction

Senrsor
TAT0a1

i}AC!MI?i 23

Fig. 10. System that performs the sensor configuration, the bilinear interpolation,
the color correction and the real time display in the three color channels.

Blonitor

5. Conclusions

The smart camera system developed speeds up image processing of the interpolation
and cofor correction algorithms, obtaining results at the pixel input data rate after an
initial latency required to store two lines of the image frame. This system can be used
in software based vision systems as a subsystem to speed up processing of low level
Image operations or it can be used as stand alone system. The resources utilized by the
implemented system are just a low percentage of the full FPGA device used, thus the
free resources can be used to implement other processing architecture, or to integrate
other connectivity capabilities using the same Cyclone II device.

6. References

ot

- 1/2-Inch 3-Megapixel CMOS Digital Image Sensor MT9T00IP12STC, Micron Technology,
Inc (2004)

2. A Swudy of Spatial Color Interpolation Algorithms for Single-Detector Digital Cameras.
Stanford University, http://scien. stanford.edu/class/psych22 l/projects/99/tingchen/index htm

3. Chi-Jeng Chang, Zen-Yi Huang, Hsin-Yen Li, Kai-Ting Hu, and Wen-Chih Tseng.: Pipelined
Operation of Image Capturing and Processing. In: 5th IEEE Conference on Nanotechnology,
Nagoya, Japan (2005)

4. Quartus I Handbook, Volume 1, 7 Recommended HDL Coding Styles. Altera Corporation
(2007)

5. Color Correction for Inage Sensors Application Notes. Image Sensor Solutions. Kodak (2003)

6. Color Correction Matrix Application Note. Lumenera Corporation (2005)

